Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Syst Evol Microbiol ; 62(Pt 8): 1736-1743, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21930677

RESUMEN

A Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, curved rod-shaped bacterium, strain N384(T), was isolated from a marine sponge (Scleritoderma cyanea; phylum Porifera) collected from a depth of 795 feet (242 m) off the west coast of Curaçao. On the basis of 16S rRNA gene sequencing, strain N384(T) was shown to belong to the genus Vibrio, most closely related to Vibrio brasiliensis LMG 20546(T) (98.8% similarity), Vibrio nigripulchritudo ATCC 27043(T) (98.5%), Vibrio tubiashii ATCC 19109(T) (98.6%) and V. sinaloensis DSM 21326(T) (98.2%). The DNA G+C content of strain N384(T) was 41.6 mol%. An analysis of concatenated sequences of five genes (gyrB, rpoA, pyrH, mreB and ftsZ; 4068 bp) demonstrated a clear separation between strain N384(T) and its closest neighbours and clustered strain N384(T) into the 'Orientalis' clade of vibrios. Phenotypically, the novel species belonged to the arginine dihydrolase-positive, lysine decarboxylase- and ornithine decarboxylase-negative (A+/L-/O-) cluster. The novel species was also differentiated on the basis of fatty acid composition, specifically that the proportions of iso-C(13:0), iso-C(15:0), C(15:0), iso-C(16:0), C(16:0), iso-C(17:0), C(17:1)ω8c and C(17:0) were significantly different from those found in V. brasiliensis and V. sinaloensis. The results of DNA-DNA hybridization, average nucleotide identity and physiological and biochemical tests further allowed differentiation of this strain from other described species of the genus Vibrio. Collectively, these findings confirm that strain N384(T) represents a novel Vibrio species, for which the name Vibrio caribbeanicus sp. nov. is proposed, with the type strain N384(T) ( = ATCC BAA-2122(T) = DSM 23640(T)).


Asunto(s)
Poríferos/microbiología , Vibrio/clasificación , Vibrio/aislamiento & purificación , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Genes Bacterianos , Funciones de Verosimilitud , Datos de Secuencia Molecular , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vibrio/genética
2.
Cladistics ; 27(1): 80-93, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34969206

RESUMEN

Sequences from gapA, gyrA and ompA were used to evaluate the relationships of the enterobacterial plant pathogens, and assess whether a robust phylogeny can be ascertained using this group of housekeeping genes. Up to 48 taxa were included in a combined phylogenetic analysis to explore the evolutionary distribution of plant pathogenic species across the family Enterobacteriaceae. Phylogenies were reconstructed from gapA, gyrA and ompA gene sequences using maximum parsimony and maximum likelihood algorithms, and phylogenetic congruence was evaluated by the incongruence length difference test and the partition addition bootstrap alteration approach. The resulting gene trees were found to be incongruent, with gapA supporting a monophyletic origin for the plant pathogenic species. In contrast, gyrA and ompA supported multiple polyphyletic origins of Erwinia, Brenneria, Pectobacterium and Pantoea in conjunction with a previously published 16S rDNA phylogeny. However, none of the trees (not even the published 16S rDNA gene tree) supports the current taxonomic classification of these genera into four clades, with Pantoea forming the only monophyletic group in the gapA, gyrA and 16S rDNA trees. Finally, the gapA, gyrA and previously published 16S rDNA phylogenies differ in the taxonomic placement of several bacterial strains which are separated in the three trees. The observed incongruence among the four gene histories is likely to be the result of horizontal transfer events, confounding the search for a robust set of housekeeping genes with a shared evolutionary history that could be used to confidently characterize the relationships of the plant pathogenic enterobacteria. © The Willi Hennig Society 2010.

3.
PLoS One ; 5(6): e10989, 2010 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-20543952

RESUMEN

BACKGROUND: Elymus (Poaceae) is a large genus of polyploid species in the wheat tribe Triticeae. It is polyphyletic, exhibiting many distinct allopolyploid genome combinations, and its history might be further complicated by introgression and lineage sorting. We focus on a subset of Elymus species with a tetraploid genome complement derived from Pseudoroegneria (genome St) and Hordeum (H). We confirm the species' allopolyploidy, identify possible genome donors, and pinpoint instances of apparent introgression or incomplete lineage sorting. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced portions of three unlinked nuclear genes-phosphoenolpyruvate carboxylase, beta-amylase, and granule-bound starch synthase I-from 27 individuals, representing 14 Eurasian and North American StStHHElymus species. Elymus sequences were combined with existing data from monogenomic representatives of the tribe, and gene trees were estimated separately for each data set using maximum likelihood. Trees were examined for evidence of allopolyploidy and additional reticulate patterns. All trees confirm the StStHH genome configuration of the Elymus species. They suggest that the StStHH group originated in North America, and do not support separate North American and European origins. Our results point to North American Pseudoroegneria and Hordeum species as potential genome donors to Elymus. Diploid P. spicata is a prospective St-genome donor, though conflict among trees involving P. spicata and the Eurasian P. strigosa suggests either introgression of GBSSI sequences from P. strigosa into North American Elymus and Pseudoroegneria, or incomplete lineage sorting of ancestral GBSSI polymorphism. Diploid H. californicum and/or allotetraploid H. jubatum are possible H-genome donors; direct involvement of an allotetraploid Hordeum species would simultaneously introduce two distinct H genomes to Elymus, consistent with some of the relationships among H-genome sequences in Hordeum and Elymus. CONCLUSIONS/SIGNIFICANCE: Comparisons among molecular phylogenetic trees confirm allopolyploidy, identify potential genome donors, and highlight cases of apparent introgression or incomplete lineage sorting. The complicated history of this group emphasizes an inherent problem with interpreting conflicts among bifurcating trees-identifying introgression and determining its direction depend on which tree is chosen as a starting point of comparison. In spite of difficulties with interpretation, differences among gene trees allow us to identify reticulate species and develop hypotheses about underlying evolutionary processes.


Asunto(s)
Núcleo Celular/genética , Genes de Plantas , Poaceae/genética , Poliploidía , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie
4.
Mol Phylogenet Evol ; 54(1): 10-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19818864

RESUMEN

This phylogenetic study focuses on a subset of the species in Elymus-specifically, the endemic Asian tetraploids presumed to combine the St genome from Pseudoroegneria with the Y genome from an unknown donor. The primary goals were to (1) determine whether the St and Y genomes are derived from phylogenetically distinct donors; (2) identify the closest relative, and potentially the likely donor, of the Y genome; and (3) interpret variation among StStYY species in terms of multiple origins and/or introgression. The goals were addressed using phylogenetic analyses of sequences from three low-copy nuclear genes: phosphoenolpyruvate carboxylase, beta-amylase, and granule-bound starch synthase I. Data sets include 16 StStYY individuals representing nine species, along with a broad sample of representatives from most of the monogenomic (i.e., non-allopolyploid) genera in the tribe. To briefly summarize the results: (1) the data clearly support an allopolyploid origin for the Asian tetraploids, involving two distinct donors; (2) the Y genome was contributed by a single donor, or multiple closely-related donors; (3) the phylogenetic position of the ElymusY genome varies among the three trees and its position is not strongly supported, so the identity of the donor remains a mystery; and (4) conflicts among the gene trees with regard to the St-genome sequences suggest introgression involving both Elymus and Pseudoroegneria.


Asunto(s)
Genoma de Planta , Filogenia , Poaceae/genética , Poliploidía , Asia , Núcleo Celular/genética , ADN de Plantas/genética , Fosfoenolpiruvato Carboxilasa/genética , Poaceae/clasificación , Poaceae/enzimología , Alineación de Secuencia , Análisis de Secuencia de ADN , Almidón Sintasa/genética , beta-Amilasa/genética
5.
Microbiology (Reading) ; 155(Pt 10): 3187-3199, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19643761

RESUMEN

This study uses sequences from four genes, which are involved in the formation of the type III secretion apparatus, to determine the role of horizontal gene transfer in the evolution of virulence genes for the enterobacterial plant pathogens. Sequences of Erwinia, Brenneria, Pectobacterium, Dickeya and Pantoea were compared (a) with one another, (b) with sequences of enterobacterial animal pathogens, and (c) with sequences of plant pathogenic gamma and beta proteobacteria, to evaluate probable paths of lateral exchange leading to the current distribution of virulence determinants among these micro-organisms. Phylogenies were reconstructed based on hrcC, hrcR, hrcJ and hrcV gene sequences using parsimony and maximum-likelihood algorithms. Virulence gene phylogenies were also compared with several housekeeping gene loci in order to evaluate patterns of lateral versus vertical acquisition. The resulting phylogenies suggest that multiple horizontal gene transfer events have occurred both within and among the enterobacterial plant pathogens and plant pathogenic gamma and beta proteobacteria. hrcJ sequences are the most similar, exhibiting anywhere from 2 to 50 % variation at the nucleotide level, with the highest degree of variation present between plant and animal pathogen sequences. hrcV sequences are conserved among plant and animal pathogens at the N terminus. The C-terminal domain is conserved only among the enterobacterial plant pathogens, as are the hrcC and hrcR sequences. Additionally, hrcJ and hrcV sequence phylogenies suggest that at least some type III secretion system virulence genes from enterobacterial plant pathogens are related more closely to those of the genus Pseudomonas, a conclusion neither supported nor refuted by hrcC or hrcR.


Asunto(s)
Proteínas Bacterianas/genética , Enterobacteriaceae/genética , Transferencia de Gen Horizontal , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/microbiología , Análisis por Conglomerados , Secuencia Conservada , ADN Bacteriano/química , ADN Bacteriano/genética , Enterobacteriaceae/aislamiento & purificación , Evolución Molecular , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Factores de Virulencia/genética
6.
J Mol Evol ; 66(6): 630-42, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18504519

RESUMEN

The phylogenetic relationships of multiple enterobacterial species were reconstructed based on 16S rDNA gene sequences to evaluate the robustness of this housekeeping gene in the taxonomic placement of the enteric plant pathogens Erwinia, Brenneria, Pectobacterium, and Pantoea. Four data sets were compiled, two of which consisted of previously published data. The data sets were designed in order to evaluate how 16S rDNA gene phylogenies are affected by the use of different plant pathogen accessions and varying numbers of animal pathogen and outgroup sequences. DNA data matrices were analyzed using maximum likelihood (ML) algorithms, and character support was determined by ML bootstrap and Bayesian analyses. As additional animal pathogen sequences were added to the phylogenetic analyses, taxon placement changed. Further, the phylogenies varied in their placement of the plant pathogen species, and only the genus Pantoea was monophyletic in all four trees. Finally, bootstrap and Bayesian support values were low for most of the nodes, and all nonterminal branches collapsed in strict consensus trees. Inspection of 16S rDNA nucleotide alignments revealed several highly variable blocks punctuated by regions of conserved sequence. These data suggest that 16S rDNA, while effective for both species-level and family-level phylogenetic reconstruction, may underperform for genus-level phylogenetic analyses in the Enterobacteriaceae.


Asunto(s)
Enterobacteriaceae/clasificación , Filogenia , ARN Ribosómico 16S/genética , Secuencia de Bases , ADN Ribosómico/química , Enterobacteriaceae/genética , Marcadores Genéticos , Funciones de Verosimilitud , Datos de Secuencia Molecular , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...